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# Fluid Statics

» Pressure:
normal force exerted by a fluid per unit area

N
- = Pa in SI system
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I
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» The actual pressure at a given position is called the absolute pressure, and it is measured relative
to absolute vacuum (i.e., absolute zero pressure).

» Most pressure-measuring devices, however, are calibrated to read zero in the atmosphere, and so
they indicate the difference between the absolute pressure and the local atmospheric pressure. This
difference is called the gage pressure.



Difference between absolute and gage

pressures

Pgage =labs Patm

Pvac =latm ~— Pabs

Absolute
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Example: Absolute Pressure of a Vacuum Chamber

* A vacuum gage connected to a chamber reads 5.8 psi at a location where the
atmospheric pressure is 14.5 psi. Determine the absolute pressure in the
chamber.

e Solution:

Ppc Py — Poge = 14.5 — 5.8 = 8.7 psi



Pressure at a point

From Newton’s second law, a force balance in the x and
z directions gives

Z E. =ma, =0 P;Az — P;lsinf = 0 @

Z F, =ma, = P,Ax — P3lcosO + =pgAxAz )= 0 @

where, W

p is the density

O
1
@ PZ—Ps—EpgAZ:O

By considering infinitesimal size for the wedge, Az tends to zero

~P=P3 =P, =P

lcosO = Ax
lsin@ = Az
P!
P Az =~ rp
— e
-
A7 T
El‘ = b
Ax I
-P: ax

Forces acting on a wedge-shaped fluid
element in equilibrium.



Pressure at a point
 Conclusion

The pressure at a point in a fluid has the same magnitude in all directions.



Variation of pressure with depth

* In this section we obtain relations for the pressure variation with depth in fluids in the absence of
any shear stresses (i.e., no motion between fluid layers relative to each other).

» Consider a differential rectangular fluid element of side lengths dx, dy, and dz.
Newton’s second law of motion for this element can be expressed as

P ez
P+— — Jdedy
dz 2

|
i

5ﬁ =ém.a 1 d [
[
Where, | =
| ol
Sm=pdV =pdxdydz mass of the fluid element : T -
_ pg dx dy dz i
O0F net force acting on the element N ois B e
a acceleration ¥ A dx
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)— P—— — Jdxds
X ¥ ar 2



Variation of pressure with depth

 Taking the pressure at the center of the element to be P, the pressures at the top and bottom surfaces of the

element can be expressed as

dpP dZ

4+ —= - ==
P az 2 and P az 2

The net surface force acting on the element in the z-direction:

aP dz AP dz ap
0Fs, . = (P = —_}) dedy — (P f— —) dedy = —— dxdydz

oz 2 dz 2 oz

Similarly, the net surface forces in the x- and y-directions are

P aP
OF; . = —; dx dy dz and OF; , = ——dxdydz
dx dy
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P dz
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Variation of pressure with depth

» Then the surface force (which is simply the pressure force) acting on the
entire element can be expressed in vector form as

P dz
P4— — )dxdy
dgz 2

5Fs = 8Fs i + 6Fs ,j + 6Fs .k

|
i

) e S| ey S i - ;
= —(!— i+ r— i — L‘) dxdydz = —VPdxdydz 1'“ :
ox :I_\.' e "
|
where ; dz
I
VP = P ¥ aP i + ar k Is the pressure gradient pg dx l}_ﬁ- 4-¥ Py
X dy’ 0z /f'_ s ';.' B
Note that: V del is a vector operator that is used to express the F ) b
gradients of a scalar function. i -

The only body force acting on the fluid element is the weight of the
element

Sﬁ}fl: = —gﬁmﬂ: = —pg dx dy dzk



Variation of pressure with depth

» Then the total force acting on the element becomes

SF = 6,’5‘_,; + SFH = —(VP + pgk:ln'.r dy dz

Substituting into Newton’s second law of motion SF‘ =dém-a
pdxdydz.a= —(VP + ng)W

Therefore, the general equation of motion for a fluid that acts as a
rigid body (no shear stresses) is determined to be

VP + pli;kl = —oq

AP~ P~ P~ > - T 3
—— i+ —Jf+—k+ pgk=—pla,i +a,j+ak
dx dy dz '

The scalar form in the three orthogonal directions
AP apP

Accelerating fluids: — = —pa,, — = —pa,, and
dx Ay

apP
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Variation of pressure with depth

» Special Case 1: Fluids at Rest

For fluids at rest or moving on a straight path at constant velocity, all components of acceleration are
Zero

aP ) dP

=), —=0, ad -—=—pgp

ox 1) iz

Fluids at rest:

The pressure remains constant in any horizontal direction (P is independent of x and y) and varies only in
the vertical direction as a result of gravity



Variation of pressure with depth

» The pressure in a fluid at rest doesn’t change in horizontal
direction.

* Pressure in a fluid increases with depth because more fluid
rests on deeper layers.

To obtain a relation for the variation of pressure with depth, consider a
rectangular fluid element of height Az, length Ax, and unit depth (into the
board) in equilibrium

By making forces balance in vertical direction Z:

YF,=ma,=0- P,Ax — P;Ax — pgAxAz =0

AP =P, — P, = pgAz = yAz
Where, y: specific weight of the fluid

lll LI

H“*




Variation of pressure with depth

* We can conclude that:

» The variation of pressure with height is negligible for gases for small to moderate distances because of their
low density.

 |f we take point 1 to be at the free surface of a liquid open to the atmosphere where the pressure is the
atmospheric pressure P, then the pressure at a depth h from the free surface becomes

P =Psm+pgh Pjage = pgh —

 For fluids whose density changes significantly with elevation ‘[
Divide eq. P,Ax — P;Ax — pgAxAz =0 by AxAz and taking limitasAz—»0 | #

ar |
o E = —pg E:} Py =Pym + pgh

The negative sign is due to our taking the positive z direction to be upward so that

dP is negative when dz is positive since pressure decreases in an upward direction.



Variation of pressure with depth

Pressure in a fluid at rest is independent
of the shape or cross section of the
container.

It changes with the vertical distance, but
remains constant in other directions.
Therefore, the pressure is the same at
all points on a horizontal plane in a
given fluid.

Py=Pp=Pe=Phr=Pep=Pp=Fg= Py, + pgh
Py Py

» Pascal’s law:
The pressure applied to a confined fluid increases
the pressure throughout by the same amount.

AR F_4

P, =P = =
1T T A, T R4




Pressure measuring devices

e Manometer:

Device uses the height of fluid column to measure pressure
difference.

e The pressure at point 2 is the same as the pressure at point 1
P,=P, Gas

s Py = Py + pgh  (absolute pressure)




Pressure measuring devices

* Inclined tube manometer:
Py, + v hy —v2l35in0 = Py

If Y1=7V2 and Pytm =0 (gage)

Py
Y, Sinf

o l,=



Solved Example:

— Qil
» The water in a tank is pressurized by air, and the pressure is measured /_ﬁ,,\,
AIR

by a multi-fluid manometer as shown in figure. Determine the gage E
pressure of air in the tank if h;=0.2 m, h, =0.3 m, and h; = 0.46 m. w;TEn T
Take the densities of water, oil, and mercury to be 1000 kg/m3, 850 _1_
kg/m3, and 13600 kg/m3, respectively ]

I Mercury




Solution

Analysis Starting with the pressure at point | at the air-water interface, and moving along the tube by
adding (as we go down) or subtracting (as we go up) the pgh terms until we reach point 2, and setting the

result equal to Py, since the tube is open to the atmosphere gives
Pl + p'l.".'.l.l(!rgﬁl + puilghl _pmrcur}-ghi = Pﬂ!‘m
Solving for P,

P = Pym — Puatec 8 — Poir 8l +Pm¢rmwg‘&3
or,
P —Fyy = gtpmmuryhj — Puatec) — Peithz)

Noting that P\ zop. = P - Pum and substituting,

= (9.81 m/s?)[(13,600 kg/m*)(0.46 m) — (1000 kg/m* (0.2 m)

_{BsukgfmJ){u.am}][ L ,I L J
lkg-m/s® A 1000 N/m~

'PInan

=56.9 kPa

oil
Air
1
& I
h
.Il'a
“-'.'lh?i' h b

L L 28

. Moo

Mercury
water



Pressure measuring devices

« Bourdon tube (/ \ /@
Is a commonly used mechanical pressure measurement \ C/

device.
C-type Spiral

'

Twisted wbe

Dial




Hydrostatic forces on submerged plane
surfaces

 When analyzing hydrostatic forces on submerged surfaces, the atmospheric
pressure can be subtracted for simplicity when it acts on both sides of the
structure. -

» We need to determine the magnitude of the force
and its point of application (Center of pressure)

e In most cases, both of the gate sides are h
supposed to atmospheric pressure.

Therefore, it 1is convenient to subtract Pryen + PN
atmospheric pressure and work with gage pressure (@ Py, considered (b) Py sublracted



Hydrostatic forces on submerged plane surfaces

» Consider a submerged inclined plate
» The absolute pressure at any point on the plate is

P =P, +pgh =P, + pgy sinf
Where
h: is the vertical distance of the point from the free
surface.
y: is the distance of the point from point O.

e Resultant force that acting on the plate (Fy) can be
determined by integrating the force P dA acting on a
differential area dA over entire surface area.

FR=fPdA=j(Po+pgysin9)dA=POA+pgsin6jydA
A A A

P.=P

LY
i
1

Plane surface
//

of area A —

‘H‘

P,+ pgysind

0



Hydrostatic forces on submerged plane
Surfaces P.= ifm .’f‘f’“fpmxm.lﬁ 0

F=p.A |\ h=ysinf
2o\

J,, ¥ dA:is the first moment of area and related to y-coordinate of

the surface centroid by

1
Ye =7 f y dA
. . A
By substituting,

Fr = (P, + pgy. sind)A = (P, + pgh.)A = P.A
Where,

h. : is the vertical distance of the centroid from the free
surface.

P, is usually atmospheric pressure, which can be ignored
in most of cases.

Fr = pgh.A

=
b !
5 — Centroid
— Center of pressure
Plane surface -
- P
of area A —
Prassare
dhsirabulion
E- n Fressare mism
oL of volume
y ’.f
o
s apzh "

L " Plene surface

Ve (di= | PdA=F,



Hydrostatic forces on submerged plane
surfaces T

» Center of pressure
We need to determine the line of action of the resultant force F;

: g\~
R=FA  F__\ _~

The vertical location of the line of action is determined by
equating the moment of the resultant force to the moment of the
distributed pressure force about the x-axis. It gives

Center of

ypkgp = j yPdA = j y(pgy sinf)dA = pg sin6 j yz dA e ('émr-.ml
A A 4 of area

YPFR ) sinf Ixx,o
Where,

yp: 1S the distance of center of pressure from x-axis
(point O)

Lixo= fA y? dA : is the second moment of area about x-axis passing through point 0 m*



Hydrostatic forces on submerged plane
surfaces - Lnw o o

« We must get the second moment of area about the center of £, =24 Il
pressure (C). NN\ _

By parallel axis theorem:
Ixx,o — Ixx,c + YCZA

Lx ¢ - Is the second moment of area about x-axis passing through the ; [\
centroid of the area m* i Centerof *
SRt Centrond
By substituting: of area
ypFr
=] + vZ24
pg Sin9 XX,C yC

YPMC MQA) 2 Ixxc
= Lxc +VEA =y, +—
Qg/Sfﬂ@ xXXx,Cc Ye - Yp Ye ycA




Hydrostatic forces on submerged plane
surfaces

* The second moment of area for some areas about their centroids
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Example on Hydrostatic forces on submerged
plane surfaces

o Example :

» The rigid gate, OAB is hinged at O and rests against a rigid support at B. What minimum horizontal force, P, is
required to hold the gate closed if its width is 3 m? Neglect the weight of the gate and friction in the hinge.

The back of the gate is exposed to the atmosphere. v Open to atmosphere 1
0 e e
E = }'A%A! Where ’G‘.r T San L
Thus, t
F =(‘?E‘mﬁ, }{EMJ(‘FM £ 3m) © / Ox
= ) ] il o
S. 88 x10°N : Water Hirg
F 1
h= 0t A Where f = T ——'9-;
So That Fz u
& / P
E:(ffﬁd’;; )(’?ﬂﬂ)(sz-ﬁ.gﬂ) o e s s s 3 B A

= Yz X I0°K




Example on Hydrostatic forces on submerged
plane surfaces W s s D

o Example :
7o fa(.‘q;éa F}J

= L
‘ff;‘ X ¢ %,

ol ; ,
7z G )4 5  Sm o= 5 207w =

% A (5m) ($am 23m)
_ 4m
The -Jg.-'rg- ﬁ; gt af The Center of The AB section . ?j:l.'.u"i_)
7 Ma =0 B A ,
and +— 2 m—+|
= /EZ(#?M"‘?M)"‘ E (Jom ) = P (%)
$*
- H
Jo _ﬁll’-f /E?‘Fj’}ﬂ-sﬁ)z’z Eé?m) + (}F}?- ijﬂ)ﬁmj -‘JE Ox
P = Y r E
_I'n,.:
= 434 AN \F; é 5




Solved example

A rectangular gate of dimension 1 m by 4 m is held in place by a stop block at
B. This block exerts a horizontal force of 40 kN and a vertical force of 0 kN.
The gate is pin-connected at A, and the weight of the gate is 2 kN. Find the
depth 1 of the water.

Solution

A free-body diagram of the gate is water

bor ¢

BI

where IV is the weight of the gate, F is the equivalent force of the water, and r
is the length of the moment arm. Summing moments about A gives

B.(1.0sin60°) — F x 7 + W(0.5 cos 60°) = 0




F x r = B, sin60” + W(0.5cos 60°)
= 40, 000sin 60° + 2000(0.5 cos 60°) (1)
= 35,140 N-m

The hydrostatic force F' acts at a distance T/§A below the centroid of the plate,
Thus the length of the moment arm is

T
=05 i 2
T m+§A (]

Analysis of terms in Eq. (2) gives

= (h/ sin(60%) — 0.5)
=4 x 1%/12 =0.333
A=4x1=4

¥
F 3

Eq. (2) becomes 0.0833

r =05+ Gi/sin(60°) — 05) )




The equivalent force of the water is

F=pA
= ~{h — 0.5sin 607)4
= 9,810(h — 0.5 sin 60°)4
= 39,240(h — 0.433) (4)

Substituting Egs. (3) and (4) into Eq. (1) gives

35,140 = Fr
0.0833

(1.155h — 0.5) (5)

35, 140 = [39,240(h — 0.433)] |0.5 +

Eq. (5) has a single unknown (the depth of water k). To solve Eq. (5), one may
use a computer program that finds the root of an equation. This was done,
and the answer is

h=208m




Try to solve the problem

The 200-kg, 5-m-wide rectangular gate shown in the figure is
hinged at B and leans against the floor at A making an angle of 45°
with the horizontal. The gate is to be opened from its lower edge
by applying a normal force at its center. Determine the minimum
force F required to open the water gate.




Hydrostatic forces on submerged curved
surfaces

* In order to determine Fr on two-dimensional curved surface, you have to
determine the horizontal and vertical components Fyand F,, separately.

e Based on , the resultant force acting on a curved solid
surface in equal an opposite to the force acting on the curved liquid surface.

Balance of horizontal forces Fy = F,

Balance of vertical forces F,=FE +W

Resultant force Fp = / F2 + F2

Angle between line of action of F, and horizontal can be determined by

Fy
tana = —
Fy




Example on Hydrostatic forces on submerged

curved surfaces

o Example :

* A 4-m-long curved gate is located in the side of a reservoir containing water
as shown in the Fig. Determine the magnitude of the horizontal and vertical
components of the force of the water on the gate. Will this force pass through

point A? Explain.
f:ﬁ'r €h i s .Bwiurﬂ i

ZF:«_=::

F;: F;_ = y-ﬁu ,4,_ = Y(§m+lfm)ﬁ* ‘lh“)
o Tt

=2

Fu= (?-Eﬂ% ‘}(&5;,“ )({2,,.1) :Q_’
-'-Sll‘>"l|||'|l!1--‘I;.:;‘l
ZF.EJ =0
F;f: F; + 4 wWhere
- _ - M‘)
F;" [3’ f’ém;l](%m .ﬁ‘r'fdn) = (?fﬂ-%ﬁ;’ ){ﬁ ‘][;2

------

9

Z v
volume ~ ¥
qud i
= TOM 4.
i
= q T Am



Example on Hydrostatic forces on submerged

curved surfaces

o Example :
0 = :p""p/--T (?.3.‘.51 %){éﬁma)

ﬂ“j 5} &
J Fp*(?.&ﬂff;)[?z m> AT m | = 783 AN

(MM(E.' Ferce of waltr on j#f\’. el be -ﬂpph}t 1n directipn 'fb)
That Shown ©n ﬁwa.

The direction of all cliftevential forees acting on The
Curved surface is perpendicalar 4y surface  and THere fore
The vesulfant must pass Through The intevseckion of all These

forvces Wwhich 153 at fa:ﬁ?‘ A Yes,

------

Z volume ~ ¥~
qud i
+ = Tf_finﬂ;lx W



Example:
A Gravity-Controlled Cylindrical Gate

A long solid cylinder of radius 0.8 m hinged at point A is used as an auto-
matic gate, as shown in the fig. When the water level reaches 5 m, the
gate opens by turning about the hinge at point A. Determine (a) the hydro-
static force acting on the cylinder and its line of action when the gate opens
and (b) the weight of the cylinder per m length of the cylinder.

Fy= F, = Py A= pghcA= pgl(s + R2)A

1 kN
= 3 -
(1000 kg/m°)(9.81 m/s)(4.2 + 0.8/2 m)(0.8 m x| m}(mﬁn kg - mfsz)

= 36.1 kN
Vertical force on horizontal surface (upward):
Fy, = Pwe A= pghc A= pghponem A

1 kN
(1000 kg/m°)(9.81 m/s*)(5 m)(0.8 m x 1 ml(lﬂl}{i kg - mfs’)

= 39.2 kN

0.8

s

| —5=42m




Example:

1

A Gravity-Controlled Cylindrical Gate

Weight of fluid block per m length (downward): L —5=42m
W = mg = pgV = pg(R? — =R¥4)(1 m)

= (1000 kg/m*)(9.81 m/s%)(0.8 m)*(1 — w/4)(1 “’}(wnu Ikgkh_l m,sz)

= 1.3kN
Therefore, the net upward vertical force is

Fo=F —W=392 - 13 =379kN

Then the magnitude and direction of the hydrostatic force acting on the o
cylindrical surface become p— :
- 2 |- 2 . . F, - / %

Fe=VFL+ F, = V361 + 37.92 = 52.3 kN R ¥ i :

tan 6 = F/F,; = 37.936.1 = 1.05 — 0 = 46.4° . e

; LI
: —



Example:
A Gravity-Controlled Cylindrical Gate

(D) When the water level is 5 m high, the gate is about to open and thus the
reaction force at the bottom of the cylinder is zero. Then the forces other
than those at the hinge acting on the cylinder are its weight, acting through
the center, and the hydrostatic force exerted by water. Taking a moment
about point A at the location of the hinge and equating it to zero gives

FaRsinG — Wy R=0 — Wy, = Fysin = (52.3 kN) sin 46.4° = 379 kN




Fluids in rigid body motion

* In this section we obtain relations for the pressure variation in fluids moving like a solid body with
or without acceleration in the absence of any shear stresses (i.e., no motion between fluid layers

relative to each other).
» Consider a differential rectangular fluid element of side lengths dx, dy, and dz.

Newton’s second law of motion for this element can be expressed as

P ez
P4+—— Jdedy
dz 2

——t———

SF =6m.d |2 |
Where, i i
dm=pdV =pdxdydz mass of the fluid element ron “L_ d-i’ Pl v. 2
6F net force acting on the element ¥ s } --------
a acceleration 7 ; dx

P—— — Jdvdy
X ¥ ,-'r: 2



Fluids in rigid body motion

 Taking the pressure at the center of the element to be P, the pressures at the top and bottom surfaces of the

element can be expressed as

dpP dZ

4+ —= - ==
P az 2 and P az 2

The net surface force acting on the element in the z-direction:

AP dz P dz P
6F . = (P —— —_}) dr dy — (I’ — —-) dedy = —— dxdydz

oz 2 dz 2 oz

Similarly, the net surface forces in the x- and y-directions are

P JaP
OF . = —; dx dy dz and OF; , = ——dxdydz
dx dy

lcr

P dz

(P +— —):h' v
dz 2

|
i

[ r P
pe dx dy u':'.' P . 2

n’:’

—-— —— e ———
r
&

i i

tir_'l-'

n

P dz

P

)d'-.' el



Fluids in rigid body motion

» Then the surface force (which is simply the pressure force) acting on the

entire element can be expressed in vector form as

5Fs = 6Fs .i + 6Fs.,j + 6F; .k

agP -+ aP—=>» dP= ;
= —(_— P E—d F— L‘) dxdydz; = —VP dxdy d:
oX ri_\.' e
where
$p 7 i 4 WP isthe pressure gradient

ox dy’ 0z
Note that; V del is a vector operator that is used to express the
gradients of a scalar function.

The only body force acting on the fluid element is the weight of the
element

th}f.: = —gﬁmﬂ: = —pg dx dy dzk

P dz
P+— — Jdvdy
s 2

|
i

[
[
[
| o
: d:
I L ]
[ I
pe dx dy u':'.' Py 2)
T
"r"
H,..r ? I!J.I.
tir_'l-'



Fluids in rigid body motion

» Then the total force acting on the element becomes

SF = 5}5‘_,; + SFH = —(VP + pgi:ld.r dy dz

Substituting into Newton’s second law of motion SF‘ =&m-a

W Pl

pdxdydz.a= —(VP + ng)@adyﬁ pa dx .}_n
Therefore, the general equation of motion for a fluid that acts as a 7 '
rigid body (no shear stresses) is determined to be - *
- ’ — . dy
VP + pgk = —pa (f’
aP+ dP- P~ - - - -
i i et ol g = <ot bl R
ox dy 0z ’
The scalar form in the three orthogonal directions
e aP apP apP
Accelerating fluids: — = —pa,, —= —pa,, and —= —p(g+a,)

X (v oz




Fluids in Rigid-body Motion
Special Case 2: Free Fall of a Fluid Body

e A freely falling body accelerates under the influence of
gravity. When the air resistance is negligible, the acceleration
of the body equals the gravitational acceleration, and
acceleration in any horizontal direction i1s zero.

* Therefore, a, = a,= 0 and a. = - g. Then the equations of
motion for accelerating fluids reduce to
9P _aP _aP _

Free-falling fluids: 0 — P = constant

ax ay oz

e Therefore, in a frame of reference moving with the fluid, it
behaves like it is in an environment with zero gravity. Also,
the gage pressure in a drop of liquid in free fall is zero
throughout.



Fluids in Rigid-body Motion

Special Case 2: Free Fallof a 4
Fluid Body

» When the direction of motion
1s reversed and the fluid 1s P, P,
forced to accelerate vertically > .
with a. = +g by placing the h
fluid container in an elevator
or a space vehicle propelled P.oP
upward by a rocket engine, l il

Liquid, p h Liquid, p

2
TPE - P| + 2pgh

the pressure gradient in the z- 9 =9 2,=9
directionis, 9P/6Z = —2pQ. (a) Free fall of a (b) Upward acceleration
» Therefore, the pressure liquid of a liquid with a; = +g
difference across a fluid layer Fig. The effect of acceleration on
now doubles relative to the the pressure of a liquid during free

, stationary fluid case fall and upward acceleration.



Acceleration on a Straight Path

* Consider a container
partially filled with a liquid.
The container is moving on
a straight path with a
constant acceleration.

* We take the projection of
the path of motion on the
horizontal plane to be the x-
axis, and the projection on
the vertical plane to be the
Z-axis

» The x- and z- components of acceleration are a_and a_. There
1s no movement in the y-direction, and thus the acceleration
in that direction 1s zero, a, = 0.



Acceleration on a Straight Path

e Then the equations of motion for accelerating fluids reduce

to aP oP aP

—_——_— — 4 —_— £ —_—— — —[-—

e pax oy 0. and —~ p(g + a,)
» Therefore, pressure is independent of y.

o Then the total differential of P
= P(x, z), which is (aP/ax) dx + (aP/az) dz, becomes

dP = —pa,dx — p(g + a,) dz
= For p = constant, the pressure difference between two
points 1 and 2 in the fluid is determined by integration to be
P, — P, = —pa,(x;, — Xy) — p(@ + a)(z;, — 2,)
» Taking point 1 to be the origin (x = 0, z = 0) where the

pressure is P, and point 2 to be any point in the fluid (no
subscript), the pressure distribution can be expressed as



Acceleration on a Straight Path

Pressure variation: P=Py— pagx — p(g + a)z

* The vertical rise (or drop) of the free surface at point 2
relative to point 1 can be determined by choosing both 1
and 2 on the free surface (so that P,= P,), and solving for
Z,-2;,

ax
g+a,

Vertical rise of surface: AZ, =2 — Zoqg = — (x, — X4)

» where z; i1s the z-coordinate of the liquid’s free surface

» The equation for surfaces of constant pressure, called isobars,
is obtained from dP = —pa, dx — p(g + a,) dz by settingd, = 0
and replacing z by z,_,,... which is the z-coordinate (the vertical
distance) of the surface as a function of x. It gives



Acceleration on a Straight Path

az isohar

Surfaces of constant pressure: q
X

dz,
Slope of isobars: Slope = —> = —

dx




Example. Overflow from a Water Tank During
Acceleration

* An 80-cm-high fish tank of
cross section 2 m x 0.6 m that
is initially filled with water is to
be transported on the back of a
*Msl

truck . The truck accelerates
from 0 to 90 kmm/h in 10 s. If 1t
i1s desired that no water spills
during acceleration, determine
the allowable initial water
height in the tank. Would you
recommend the tank to be
aligned with the long or short
side parallel to the direction of
motion?

80 cm




Example. Overflow from a Water Tank During
Acceleration

SOLUTION A fish tank is to be transported on a truck. The allowable water
height to avoid spill of water during acceleration and the proper orientation
are to be determined.

Assumptions 1 The road is horizontal during acceleration so that accelera-
tion has no vertical component (a, = 0). 2 Effects of splashing, braking, dri-
ving over bumps, and climbing hills are assumed to be secondary and are
not considered. 3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the z-axis to be
the upward vertical direction, and the origin to be the lower left corner of the
tank. Noting that the truck goes from O to 90 km/h in 10 s, the acceleration
of the truck is

_ AV _ (90 — O kmh( 1mss

= 2
&%= At 10s  \3ekmm/  >™5

The tangent of the angle the free surface makes with the horizontal is

a, 2.5

= — 0.255 d thus 6 — 14.3
g+a, 981+0 S s ?)

tan @ =



The maximum vertical rise of the free surface occurs at the back of the tank,
and the vertical midplane experiences no rise or drop during acceleration
since it is a plane of symmetry. Then the vertical rise at the back of the tank
relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:

Az, = (by/2) tan @ = [(2 m)/2] X 0.255 = 0.255 m = 25.5 cm

Case 2: The short side is parallel to the direction of motion:

Az, = (b,/2) tan 6 = [(0.6 m)/2] X 0.255 = 0.076 m = 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be
oriented such that its short side is parallel to the direction of motion. Empty-
ing the tank such that its free surface level drops just 7.6 cm in this case
will be adequate to avoid spilling during acceleration.

Discussion Note that the orientation of the tank is important in controlling
the vertical rise. Also, the analysis is valid for any fluid with constant den-

sity, not just water, since we used no information that pertains to water in
the solution.



Example:

* In the shown fig. use a, = 12 m/s? find the static pressure at points a, b, and ¢. W=1.8 m
a
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Rotation in a Cylindrical Container

We know from experience that when a glass filled with water is rotated
about its axis, the fluid is forced outward as a result of the so-called cen-
trifugal force, and the free surface of the liquid becomes concave. This is

known as the forced vortex motion. Axis of
rotation
Container is rotating about the z-axis i
E: rrWZ,_P:O,E:_rg Free
_ qir _ o) 1z surface -/
Total differential of P L \.Ku_:}__}yﬁf.
t '
dP = rrw?dr - rgdz 2
nﬁl
On an isobar’ dP =0 Surfaces of constant pressure
7!
dz. rw® w?® i
SORAL = ® Lisobar — A= r2 + Cl r v Yo
dr g 29 || r
| R

which is the equation of a parabola g




Rotation in a Cylindrical Container
2

2
z; =—1r2+(C
isobar 2 g 1
For the free surface, setting r=0 in the previous equation gives Z..,..(0)=C,=hc

Where hc is the distance of the free surface from the bottom of the container
along axis of rotation

Then the equation for the free surface becomes Z=—r'+h
Zs is the distance of the free surface from the bottom of the container.

The volume of a cylindrical shell element of radius r, height Zs and thickness

dris
2 22
(fi rt+ hc)r dr = wRZ(E—E- + h,_,)
0

R R
V= J ZNZ,FO'F=21TJ
., o \2 4g

rm= Fe=

Free
surface

-

|
-
R
g

i

Since mass is conserved and density is constant, this volume must be equal

to the original volume of the fluid in the container, which is
V= “ﬂ'thﬂ.

FAIIIID



where h, is the original height of the fluid in the container with no rotation.
Setting these two volumes equal to each other, the height of the fluid along
the centerline of the cylindrical container becomes

Axis of
h. = hy — szz rotation
49 | ”
Then the equation of the free surface becomes C—‘)
Z Free |
Free surface: 2=hy — :J—g (R? - 2r?) surface |\*
The maximum vertical height occurs at the edge where r = R, and the max- L \‘\4?—14/
imum height difference between the edge and the center of the free surface 2 h,
is determined by evaluating z, at r = R and also at r = 0, and taking their *
difference, h, !
4
Maximum height difference: AZ, mx = ZAR) — 2,(0) = ‘;é R 7!
When p = constant, the pressure difference between two points 1 and 2 in ' ! > -
the fluid is determined by integrating dP = prw? dr — pg dz. This yields l -

2
P, - P, =T"{f§“ff)‘ﬂ§'{zz"zl}



Taking point 1 to be the origin (r = 0, z = 0) where the pressure is P, and
point 2 to be any point in the fluid (no subscript), the pressure distribution
can be expressed as
2
;iul

Pressure variation: P=P,+ 5 rt— pgz

Note that at a fixed radius, the pressure varies hydrostatically in the vertical
direction, as in a fluid at rest. For a fixed vertical distance z, the pressure
varies with the square of the radial distance r, increasing from the centerline
toward the outer edge. In any horizontal plane, the pressure difference
between the center and edge of the container of radius R is AP = pw?R?/2.

surface
¥

PIRIPD2IPIPD



Rising of liquid during rotation

e Example:

A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig.
3-55, is partially filled with 50-cm-high liquid whose density is 850 kg/m>.
Now the cylinder is rotated at a constant speed. Determine the rotational
speed at which the liquid will start spilling from the edges of the container.

SOLUTION A vertical cylindrical container partially filled with a liquid is
rotated. The angular speed at which the liquid will start spilling is to be
determined.

Assumptions 1 The increase in the rotational speed is very slow so that the
liquid in the container always acts as a rigid body. 2 The bottom surface of
the container remains covered with liquid during rotation (no dry spots).
Analysis Taking the center of the bottom surface of the rotating vertical
cylinder as the origin (r = 0, z = 0), the equation for the free surface of the
liquid is given as

2
z, = hy —f:—gm* ~2r})




Rising of liquid during rotation

e Example:

Then the vertical height of the liquid at the edge of the container where r =
R becomes

‘R?
z:(R} . hﬂ + “‘;—g

where A, = 0.5 m is the original height of the liquid before rotation. Just
before the liquid starts spilling, the height of the liquid at the edge of the con-

tainer equals the height of the container, and thus z, (R) = 0.6 m. Solving the

last equation for w and substituting, the maximum rotational speed of the
container is determined to be

 [aglz® — \/4{9.31 m/sHI0.6 — 0.5) m] .,
o \/ & Il = — 19.8 radss




Rising of liquid during rotation

e Example:

last equation for « and substituting, the maximum rotational speed of the
container is determined to be

~ 4glz.(R) — ho]  /4(9.81 mss9)[(0.6 — 0.5) m]
= R N (0.1 m)?
Noting that one complete revolution corresponds to 27 rad, the rotational

speed of the container can also be expressed in terms of revolutions per
minute (rpm) as

= 19.8 rad’s

w  19.8 rads ( 60 s

27 2w radirevh min) = .

Therefore, the rotational speed of this container should be limited to 189
rom to avoid any spill of liquid as a result of the centrifugal effect.
Discussion Note that the analysis is valid for any liquid since the result is
independent of density or any other fluid property. We should also verify that
our assumption of no dry spots is valid. The liquid height at the center is

4
z,(0]=hu—%z=0.4m

Since z(0) is positive, our assumption is validated.




Example

* Anopen cylindrical tank of diameter 1 m and height 1.5 m is 2/3 full of water. Find the maximum speed of

rotation for which no water spills. Find the speed of rotation for which the center of the bottom starts to clear.

Upon rotation the free-surface takes the shape of a paraboloid
For maximum speed with no spill:

The height of the paraboloid surface is 1 m |
Z,— 7 Zw—z(rz — 1)
2 1 2g 2 1

o3P J

The previous equation comes from
—

0)2
Z,=hy — @(RZ — 2r2)

2

1=

N=846r.p.m

Any further increase of rpm will increase the depth of parabola and water spilling

> *0)9.81 (0.52 — 0) |:> w = 8.859 rad/sec Mj
ol l

N

The center of the tank bottom starts to clear when the depth of the parabola is 1.5 m and w=10..85 rad/s



Stability of immersed and floating bodies

o Stability of instability concepts

Case (a) is stable since any small disturbance (someone moves the ball to the right
or left) generates a restoring force (due to gravity) that returns it to its initial position.

Case (b) is neutrally stable because if someone moves the ball to the right or left, it
will stay put at its new location. It has no tendency to move back to its original location,
nor does it continue to move away.

Case (c) is a situation in which the ball may be at rest at the moment, but any
disturbance, even an infinitesimal one, causes the ball to roll off the hill—it does not
return to its original position; rather it diverges from it. This situation is unstable.

(a) Stable

Q

(b) Neutrally stable

(c) Unstable



Stability of immersed and floating bodies

* The rotational stability of an immersed body

depends on the relative locations of the center of gravity G of the body and the
center of buoyancy B, which is the centroid of the displaced volume.

Fluid

Restoring moment

_ Weight
Weight (a) Stable (b) Neutrally stable (¢) Unstable



Stability of immersed and floating bodies

o Stability of floating bodies

* The measure of stability
for floating bodies is
the metacentric height
GM.

Point M: the intersection point
of the lines of action of the
buoyant force through the body
before and after rotation.

(a) Stable

i<

Metacenter ~
IlI r
f M

' Restoring
Ilf moment

(h) Stable

/ Overturning
/  moment
/

(c) Unstable



Stability of immersed and floating bodies
o

» Metacentric height (GM): The IV
distance between the center of
gravity (G) of floating body and the "
metacenter (M) is called
metacentric height. (i.e., distance

GM shown in fig)

GM=BM-BG



Stability of immersed and floating bodies

o Example :

» Assolid cylinder 2 m in diameter and 2 m high is floating in water with its axis vertical. If the specific gravity
of the material of cylinder is 0.65 find its metacentric height. State also whether the equilibrium is stable or

unstable.
Size of solid cylinder= 2m dia, & 2m height
Specific gravity solid cylinder=0.65
Let h is depth of immersion=?
For equilibrium

Weight of water displaced = weight of wooden

block
9.81(1t/4(2)3(h))=9.81(0.65).(,t/4(2)*(2))
h=0.65(2)=1.3m

2m

2m

Geo
BO®

.3m




Stability of immersed and floating bodies

o Example :

Center of buoyancy from O=0B=1.3/2=0.65m

Center of gravity from O=0G=2/2=Im

BG=1-0.65=0.35m

Also; BM=I/V

Moment of inertia=I=(71/64)(2)4=0.785m+4

Volume displaced=V=(n/4)(2)%(1.3)=4.084m3

BM=1/V=0.192m

GM=BM-BG=0.192-0.35=-0.158m

-ve sign Indicate that the metacenter (M) 1s
below the eenter of gravity (G), therefore,
the cylinder 1s in unstable equilibrium

2m

2m

Ge

.3m







