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Fluid Statics
• Pressure:

normal force exerted by a fluid per unit area

� = ��                                 ��� = �� �� �� ������ 
• The actual pressure at a given position is called the absolute pressure, and it is measured relative

to absolute vacuum (i.e., absolute zero pressure).

• Most pressure-measuring devices, however, are calibrated to read zero in the atmosphere, and so
they indicate the difference between the absolute pressure and the local atmospheric pressure. This
difference is called the gage pressure.



Difference between absolute and gage 
pressures

���� � ��� ���
��� � ��� ���



Example: Absolute Pressure of a Vacuum Chamber

• A vacuum gage connected to a chamber reads 5.8 psi at a location where the 
atmospheric pressure is 14.5 psi. Determine the absolute pressure in the 
chamber.

• Solution: ��� � ��� ���



Pressure at a point

Forces acting on a wedge-shaped fluid
element in equilibrium.

From Newton’s second law, a force balance in the x and
z directions gives��� = ��� = 0               ��∆� − ������� = 0

��� = ��� = 0               ��∆� − ������� − 12 ��∆�∆� = 0
where,� is the density               
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By considering infinitesimal size for the wedge, ∆� tends to zero∴ ��= �� = �� = �



Pressure at a point

• Conclusion

The pressure at a point in a fluid has the same magnitude in all directions.



Variation of pressure with depth
• In this section we obtain relations for the pressure variation with depth in fluids in the absence of

any shear stresses (i.e., no motion between fluid layers relative to each other).
• Consider a differential rectangular fluid element of side lengths dx, dy, and dz.

Newton’s second law of motion for this element can be expressed as

��⃗ = �� . �⃗
Where,�� = � �� = � �� �� �� mass of the fluid element�� net force acting on the element                                               � acceleration                                                          



Variation of pressure with depth
• Taking the pressure at the center of the element to be P, the pressures at the top and bottom surfaces of the 

element can be expressed as� + ���� ��� and         � − ���� ���
The net surface force acting on the element in the z-direction:

Similarly, the net surface forces in the x- and y-directions are



Variation of pressure with depth
• Then the surface force (which is simply the pressure force) acting on the

entire element can be expressed in vector form as

where 

is the pressure gradient

Note that: ∇ del is a vector operator that is used to express the 
gradients of a scalar function.

The only body force acting on the fluid element is the weight of the 
element



Variation of pressure with depth
• Then the total force acting on the element becomes

Substituting into Newton’s second law of motion � �� �� �� . �⃗ = − ∇� + ��� �� �� ��
Therefore, the general equation of motion for a fluid that acts as a 
rigid body (no shear stresses) is determined to be

The scalar form in the three orthogonal directions



Variation of pressure with depth

• Special Case 1: Fluids at Rest
For fluids at rest or moving on a straight path at constant velocity, all components of acceleration are 
zero

The pressure remains constant in any horizontal direction (P is independent of x and y) and varies only in 
the vertical direction as a result of gravity



Variation of pressure with depth
• The pressure in a fluid at rest doesn’t change in horizontal 

direction.

• Pressure in a fluid increases with depth because more fluid 
rests on deeper layers.

• To obtain a relation for the variation of pressure with depth, consider a
rectangular fluid element of height ∆z, length ∆x, and unit depth (into the
board) in equilibrium

• By making forces balance in vertical direction Z:

• ∑�� = ��� = 0→               ��∆� − ��∆� − ��∆�∆� = 0
• ∆� = �� − �� = ��∆� = �∆�
• Where, �: specific weight of the fluid



Variation of pressure with depth
• We can conclude that:
• The variation of pressure with height is negligible for gases for small to moderate distances because of their 

low density. 
• If we take point 1 to be at the free surface of a liquid open to the atmosphere where the pressure is the 

atmospheric pressure ����, then the pressure at a depth h from the free surface becomes

• For fluids whose density changes significantly with elevation

Divide eq.         ��∆� − ��∆� − ��∆�∆� = 0 by ∆�∆� and taking limit as ∆�→ 0����

��� ����

The negative sign is due to our taking the positive z direction to be upward so that 
dP is negative when dz is positive since pressure decreases in an upward direction.



Variation of pressure with depth
• Pressure in a fluid at rest is independent

of the shape or cross section of the
container.

• It changes with the vertical distance, but
remains constant in other directions.

• Therefore, the pressure is the same at
all points on a horizontal plane in a
given fluid.

• Pascal’s law:
The pressure applied to a confined fluid increases

the pressure throughout by the same amount.

�� = ��      →    ���� = ����     →         ���� = ����



Pressure measuring devices

• Manometer:
Device uses the height of fluid column to measure pressure 

difference.

• The pressure at point 2 is the same as the pressure at point 1�� = ��∴ �� = ���� + ��ℎ (absolute pressure)



Pressure measuring devices

• Inclined tube manometer:

� � � � � ���
��If �= � and ��� ��

� ��



Solved Example:

• The water in a tank is pressurized by air, and the pressure is measured 

by a multi-fluid manometer as shown in figure.  Determine the gage 

pressure of air in the tank if h1= 0.2 m, h2 = 0.3 m, and h3 = 0.46 m. 

Take the densities of water, oil, and mercury to be 1000 kg/m3, 850 

kg/m3, and 13600 kg/m3, respectively



Solution

water

Mercury

Oil



Pressure measuring devices

• Bourdon tube
is a commonly used mechanical pressure measurement 

device.



Hydrostatic forces on submerged plane
surfaces
• When analyzing hydrostatic forces on submerged surfaces, the atmospheric

pressure can be subtracted for simplicity when it acts on both sides of the
structure.

• We need to determine the magnitude of the force 
and its point of application (Center of pressure)

• In most cases, both of the gate sides are
supposed to atmospheric pressure.

Therefore, it is convenient to subtract
atmospheric pressure and work with gage pressure



Hydrostatic forces on submerged plane surfaces
• Consider a submerged inclined plate
• The absolute pressure at any point on the plate is� = �� + ��ℎ = �� + ��� ����
Where

h: is the vertical distance of the point from the free 
surface.

y: is the distance of the point from point O.

• Resultant force that acting on the plate (�� ) can be
determined by integrating the force P dA acting on a
differential area dA over entire surface area.

�� = � � �� = � �� + ��� ����  �� = ��� + �� ���� � � �����



Hydrostatic forces on submerged plane
surfaces∫ � ��� : is the first moment of area and related to y-coordinate of 
the surface centroid by �� = 1�� � ���
By substituting,�� = �� + ���� ���� � = �� + ��ℎ� � = ���
Where,              ℎ� : is the vertical distance of the centroid from the free 
surface.              ��: is usually atmospheric pressure, which can be ignored 
in most of cases. �� = ��ℎ��



Hydrostatic forces on submerged plane
surfaces

• Center of pressure
We need to determine the line of action of the resultant force ��

The vertical location of the line of action is determined by
equating the moment of the resultant force to the moment of the
distributed pressure force about the x-axis. It gives

���� = � �� �� = � � ��� ���� �� = �� ���� � �� ����� ���� = �� ���� ���,�
Where, ��: is the distance of center of pressure from x-axis
(point O)        ���,�= ∫ �� ��� : is the second moment of area about x-axis passing through point O     ��



Hydrostatic forces on submerged plane
surfaces
• We must get the second moment of area about the center of

pressure (C).
By parallel axis theorem:���,� = ���,� + ����        ���,� : is the second moment of area about x-axis passing through the 

centroid of the area           ��
By substituting: ������ ���� = ���,� + ������(���� �����)�� ���� = ���,� + ����           →            �� = �� + ���,����



Hydrostatic forces on submerged plane 
surfaces
• The second moment of area for some areas about their centroids 



Example on Hydrostatic forces on submerged 
plane surfaces 
• Example :
• The rigid gate, OAB is hinged at O and rests against a rigid support at B. What minimum horizontal force, P, is

required to hold the gate closed if its width is 3 m? Neglect the weight of the gate and friction in the hinge.
The back of the gate is exposed to the atmosphere.



Example on Hydrostatic forces on submerged 
plane surfaces 
• Example :



Solved example







Try to solve the problem
The 200-kg, 5-m-wide rectangular gate shown in the figure is
hinged at B and leans against the floor at A making an angle of 45°
with the horizontal. The gate is to be opened from its lower edge
by applying a normal force at its center. Determine the minimum
force F required to open the water gate.



Hydrostatic forces on submerged curved 
surfaces
• In order to determine �� on two-dimensional curved surface, you have to

determine the horizontal and vertical components ��and �� separately.
• Based on Newton’s third law, the resultant force acting on a curved solid

surface in equal an opposite to the force acting on the curved liquid surface.

Balance of horizontal forces                 �� = ��
Balance of vertical forces                     �� = �� + ��� = ��� + ���Resultant force

Angle between line of action of �� and horizontal can be determined by  tan� = ����



Example on Hydrostatic forces on submerged 
curved surfaces 
• Example :
• A 4-m-long curved gate is located in the side of a reservoir containing water

as shown in the Fig. Determine the magnitude of the horizontal and vertical
components of the force of the water on the gate. Will this force pass through
point A? Explain.



Example on Hydrostatic forces on submerged 
curved surfaces 
• Example :



Example: 
A Gravity-Controlled Cylindrical Gate

the fig.



Example: 
A Gravity-Controlled Cylindrical Gate



Example: 
A Gravity-Controlled Cylindrical Gate



Fluids in rigid body motion
• In this section we obtain relations for the pressure variation in fluids moving like a solid body with

or without acceleration in the absence of any shear stresses (i.e., no motion between fluid layers
relative to each other).

• Consider a differential rectangular fluid element of side lengths dx, dy, and dz.
Newton’s second law of motion for this element can be expressed as��⃗ = �� . �⃗

Where,�� = � �� = � �� �� �� mass of the fluid element�� net force acting on the element                                                     � acceleration                                                          



Fluids in rigid body motion
• Taking the pressure at the center of the element to be P, the pressures at the top and bottom surfaces of the 

element can be expressed as� + ���� ��� and         � − ���� ���
The net surface force acting on the element in the z-direction:

Similarly, the net surface forces in the x- and y-directions are



Fluids in rigid body motion
• Then the surface force (which is simply the pressure force) acting on the

entire element can be expressed in vector form as

where 

is the pressure gradient

Note that: ∇ del is a vector operator that is used to express the 
gradients of a scalar function.

The only body force acting on the fluid element is the weight of the 
element



Fluids in rigid body motion
• Then the total force acting on the element becomes

Substituting into Newton’s second law of motion � �� �� �� . �⃗ = − ∇� + ��� �� �� ��
Therefore, the general equation of motion for a fluid that acts as a 
rigid body (no shear stresses) is determined to be

The scalar form in the three orthogonal directions





















Example:
• In the shown fig. use ax = 12 m/s2 find the static pressure at points a, b, and c. W=1.8 m



Rotation in a Cylindrical Container

Container is rotating about the z-axis

Total differential of P

On an isobar, dP = 0
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Surfaces of constant pressure

which is the equation of a parabola



Rotation in a Cylindrical Container

������ � � �
For the free surface, setting r=0 in the previous equation gives Zisobar(0)=C1=hc

Where hc is the distance of the free surface from the bottom of the container 
along axis of rotation

Then the equation for the free surface becomes

Zs is the distance of the free surface from the bottom of the container.

The volume of a cylindrical shell element of radius r, height Zs and thickness 
dr is 







Rising of liquid during rotation

• Example:



Rising of liquid during rotation

• Example:



Rising of liquid during rotation

• Example:



Example
• An open  cylindrical tank of diameter 1 m and height 1.5 m is 2/3 full of water. Find the maximum speed of 

rotation for which no water spills. Find the speed of rotation for which the center of the bottom starts to clear.

Upon rotation the free-surface takes the shape of a paraboloid
For maximum speed with no spill:
The height of the paraboloid surface is 1 m�� − �� = ��2� (��� − ���)
The previous equation comes from�� = ℎ� − ��4� (�� − 2��)1 = ��2 ∗ 9.81 (0.5� − 0) � = 8.859 ���/���
N = 84.6 �. �.�

Any further increase of rpm will increase the depth of parabola and water spilling

The center of the tank bottom starts to clear when the depth of the parabola is 1.5 m and w=10..85 rad/s



Stability of immersed and floating bodies

• Stability of instability concepts

Case (a) is stable since any small disturbance (someone moves the ball to the right 
or left) generates a restoring force (due to gravity) that returns it to its initial position.

Case (b) is neutrally stable because if someone moves the ball to the right or left, it
will stay put at its new location. It has no tendency to move back to its original location,
nor does it continue to move away.

Case (c) is a situation in which the ball may be at rest at the moment, but any
disturbance, even an infinitesimal one, causes the ball to roll off the hill—it does not
return to its original position; rather it diverges from it. This situation is unstable.



Stability of immersed and floating bodies

• The rotational stability of an immersed body 
depends on the relative locations of the center of gravity G of the body and the 

center of buoyancy B, which is the centroid of the displaced volume.



Stability of immersed and floating bodies

• Stability of floating bodies

• The measure of stability
for floating bodies is
the metacentric height
GM.

Point M: the intersection point
of the lines of action of the
buoyant force through the body
before and after rotation.



Stability of immersed and floating bodies



Stability of immersed and floating bodies
• Example :
• A solid cylinder 2 m in diameter and 2 m high is floating in water with its axis vertical. If the specific gravity

of the material of cylinder is 0.65 find its metacentric height. State also whether the equilibrium is stable or
unstable.



Stability of immersed and floating bodies
• Example :




